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Radiated emission at high-order harmonic numbers is observed from thin crystalline layers irradiated by
short femtosecond elliptically polarized laser light. The applied external radiation field drives the free electrons
in the material to large oscillation amplitudes and harmonics are generated by the electronic response to the
periodic lattice potential. A model was modified by introducing a more general expression for the lattice force
that by sharpening or by smoothing the potential in turn allows the strength of the electronic perturbation to be
varied. The electron motion is computed numerically by solving the electromagnetic force equation and by
regarding the lattice potential as a perturbative source. For linearly polarized laser light the radiation spectra are
characterized by emission lines forming a flat plateau in the region of low harmonic orders with a sharp cutoff
for higher numbers. For circular polarization strong emission is found for two harmonic numbers, the first in
the low-harmonic region and the second around the cutoff. By solving analytically the electron motion in an
elliptically polarized laser field, an exact expression for the electron displacement in all three spatial directions
is found. The amplitude of the oscillations sets the analytic form for calculating the peak harmonic numbers
emitted from the laser-lattice interaction. The radiation effect studied here, if detected, might hold some
potential as a diagnostic and could be used, in principle, as a method for determining the lattice parameter in
crystalline structures.
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[. INTRODUCTION attributed to nonlinear resonant absorption with the plasma

wave coupling to the radiation field in the steep density gra-

Recent theoretical and computational work on the irradiadient profile and generating harmonics. From those experi-
tion of thin solid layers by short-pulse moderately intensements a sharp cutoff at high harmonic numbers was found.
lasers has drawn attention to the high-order harmonic emisfhis characteristic emission was erroneously interpreted as
sion that can be generat¢d,2]. The model proposed by the maximum harmonic for which the upper density shelf
Huller and Meyer-ter-Vehi1] to explain harmonic genera- \ent underdense. Low temporal and spatial resolution mis-

tion from the interaction of an electromagnetic laser wavecg|culations led to an incorrect interpretation in Carman’s
with thin film targets describes the mechanism as one ithroposed model.

which the free electrons inside the material are driven by thé  Racent advances in laser technology have allowed devel-
applied field to large amplitude excursions. Perturbations ”bpment of devices capable of delivering high intensities

the electron motion due to the ion cores give rise to harmoniY>lolgW/sz) and ultrashort pulses-10 fs) in plasmas. In

emission. Results reported [d] predict that ionized elec- . . e
. . . . such experiments no cutoff features in the emission spectra
trons, under both the action of a linearly polarized laser fiel : ) . .
ave been observed, as was predicted in numerical simula-

and a periodic ion potential, radiate a spectrum of harmonic .

featured by a flat plateau over the region of low harmonic'°"S performed by Gibbof]. . o
numbers and a sudden cutoff around the maximum harmonic Fresumably, when external electromagnetic radiation is
number emitted. It was shown that the maximum harmonidncident on steep density profile dense plasmas, density fluc-
order emitted depends on the lattice spacing and on the lasifations on the plasma surface are induced, constituting
wavelength and input energy. The model describedljh sources for harmonic generatigs—7].

was modified |r[2] by proposing a more genera| expression The radiation mechanism considered in this work presents
for the lattice potential that by sharpening or by smoothingfeatures in common with the Smith-PurcelBP) effect

the potential in turn allows the strength of the perturbation td8—10, an effect independently found by Salisbu], in

be varied. The effects of pulse shaping on the radiation emiswhich radiation arises from the passage of highly energetic
sion were also considered. In particular, for Gaussian pulseslectrong=50 keV) through a periodical array of grooves in
the strongest emission was found to be emitted by lowethe surface of a grating. In the SP effect coherent band ra-
harmonic numbers and a cutoff was still observed. Theliation is emitted from the radio to ultraviolet spectral re-
mechanism of harmonic generation studied here is distinagions with frequencyw:kg~v(1—Bcos¢9)*1, wherek, is
from the emission observed when highly intense laser lighthe grating periodicityy denotes the velocity of a beam elec-
illuminates a solid surface or a dense plasma. In early experiron, 8=v/c, and @ is the angle between the beam direction
ments carried on by Carmaet al. [3], the emission was and the source-observer axis.
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The radiation in a periodic medium is composed of emisfew femtosecond$~40 f9, allowing quiver excursions
sion at different harmonic orders. The condition for radia-=(\ /27)a, greater than the lattice spacidg. For in-
tion, the resonance condition, can be derived on the basis atance, forl, =5x10°°W/cn? (ay~2.025<10 ) the lat-
conservation laws for the momentum and the energy. Usingce electrons execute oscillation amplitudesséf,~9, with
this idea, it will be shown that the crystal lattice might be | taken as 4 A.
regarded as a periodic diffractive grating responsible of The classical equation of motion for free electrons in a
emission when charged particles, driven by an external elecgolid material under the influence of both a plane monochro-
tromagnetic field, traverse arrays of ion cores inside the solignatic linearly polarized electromagnetic wave and a lattice
lattice. The remainder of this work is organized as follows.potential ¢(r) can be expressed in the form
In Sec. Il we review the model for harmonic emission from
periodic lattice arrays and Sec. Il outlines the numerical
procedure for computing the electron dynamics for an ellip-
tically polarized light field. In Sec. IV we account for the
exact analytical solution of the dynamics of electrons driverEssentially, the electron trajectories consist of harmonic os-
by an electromagnetic field with elliptic polarization. Section cillations r(t) =ry+r,(t)+r,(t), around centers,, where
V examines the resonance condition for radiation. Lastly, & ,(t)= §sin(w t—k_-ry) is the quiver electron motion with
discussion of the results presented is addressed in Sec. Vlamplitudeé= eEL/mOwE andr,(t) corresponds to small de-

viations produced by the perturbation of the lattice force.
II. HARMONIC EMISSION EROM DRIVEN ELECTRONS With the aim of representing the periodic lattice force acting
IN A PERIODIC LATTICE: LINEAR POLARIZATION on electrons as they make excursions through the crystalline

) _ _ _ ~array we considered a potentia(r) of the form
In this section we briefly review aspects of the radiation

phenomena from the electron quiver motion in a crystalline

array, as first treated in Reffl] and [2]. The transverse _ - ; )

quiver momentum of an electron embedded in a light field is (1) 2 PesinfLAsinCke-1) ], @
given by p=mgca,, wherea,=eAy/myc? is the unitless

normalized vector potential of the incident radiation field. herek.— k& ds to th : | latt ¢
Heree, c, my, andA, denote the electron charge, the speedW EreKc=Ke& corresponds 1o the reciprocal fattice vectors
nd the strength amplitudg; is of the order of one volt for

of light in vacuum, the electron rest mass, and the vectofN® . .
9 typical metald 16]. The factorA in the last expression can be

Fnoéﬁ;:gl{/éﬁf’cﬁesg;/:r%éll):;Otlng the magnitude of the norincorpo_rated into_the model i_n order to_include_variatic_)ns in
the lattice potential. The lattice potential considered in Eq.
(2) can be reduced to the conventionally used sinusoidal po-
tential and so applied in Refl1].
Following Huler and Meyer-ter-Vehn’s model and incor-

where\ is the laser wavelength in micrometers andis — 4rating a more general expression for the lattice potential,
the field intensity, we can express the velocity of oscillation,g -onsidered above, the lattice force gives rise to a per-

as vos=Cay/y, , wherey, =(1+ad) is the relativistic  t,rped motion described by
factor associated with the transverse electron motion. Al-

though the model proposed is valid only for low-intense field
intensities, we have made use—for completeness—of a rela- - .

' . ) ) Fo~— eA¢p.Kk.cogk.-r)coshAsin(k.-r)].
tivistic formulation. Thus, the analytic expressions through- of 2=~ 2 eAdckccosker)costiAsin(ke:r)]
out this work must therefore be considered classical, with
y~1.

mof (t)=—eE_ sin(w t—k_-r)+eVa(r). (1)

ay=8.544x< 101U M2 (Wicm?)x A, (um),

: : - : : Harmonics are generated due to the Ilattice force
At high laser intensities the crystalline structure might be .. X
g A g mgro(t’), evaluated at the retarded timté=t— Q- (Rgps

affected by the action of the radiation field. Distortions to the here O i ) f h | h
lattice configuration can produce alterations in the harmonic—")/C: Where 2 is a unit vector from the particle to the

ity of the electron motion through the ion cores. Neverthe-0PServer andois the vector from the origin to the obser-

less, the lattice structure can preserve its initial configuratiofftion point. In what follows, the prime has been dropped for
when ultrashort and low-intense laser pulses are applied. fonvenience. Using Jacobi expansions for the arguments, the
has been shown from a number of experimental works thacceleration can be expressed as

ultrashort femtosecond laser pulses at intensities lower than

10"W/cn? can be applied without impinging important ) e

damage on a crystalline structre2,13. Laser-induced dis- Fo~— 2 P DekAD, €mdm(Z)cosa(t)cospB

orders of material surfaces for pulses of duration 100 fs at ¢ o m

peak intensities of tenths of J/énhave been observed

[14,15, and where a loss of cubic order was found 150 fs XCOS*{ A, emdn(Z)cosa(t)sing|, €)
after the pulse. Taking the above into consideration, for the "

time scale and laser power, we have used in our simulations

CO, (A =10.6um) laser light with pulse duration of only a where
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a(t)=immr—w t+b, cutoff near the peak intensity. The location of the cutoff can
then be derived from the resonance conditiow,
B=3imm+k, 1o, ~Kose» Which yields
Z=K.- 5, )\L ao
c nmaxz(l— — (4)
c/ VL
)
b=k -1 =KL To~ € Rops. wherel is the lattice spacing.

The overall strength of the spectrum is determined by the
The power radiated by single electrons per unit solid angle iff!€ctron distribution. From the analysis of the phase factors

the directionQ is given by[17] involved in the expression for the acceleration field it can be
shown that correlations between electrons are impoftnt
dP(t) ¢ ) in the sense that for cases in which the electrons are corre-
a0 E|RErao(taQ)| ; lated the radiation emitted will be enhanced and at the same
time will produce only harmonics of odd order. For disor-
where dered electron systems, the emission is found to be less in-

tense and harmonics of any order are permitted. The former

e i case—which represents a more realistic electron behavior—

Erad 1.Q) = — 2 QX[QXT(1)]/R, would correspond to oscillation centers that cluster at the
sites of the ions or at interstitial locations.

andR=|Ryps |-
The spectral components are then obtained by evaluatingll. NUMERICAL COMPUTATION OF THE RADIATION
and Fourier analyzing the acceleration field. The emission EMISSION

calculated by means of this procedure is in accordance with

that obtained by numerically integrating the electron force In order to study the dynamics of electrons in the applied

equation, a step we follow in the next section. radiation field a single-particle force equation for an ellipti-
In order to have insight into the maximum harmonic num-cally polarized electromagnetic plane wave with the lattice

ber that can be generated from the action of the lattice forcgotential term as an external source was solved. The electron

on the electron motion we follow a procedure that involvesdynamics was examined by means of the numerical solution

conservation of energy and momentum. of the force equation
The radiation spectrum produced when a charged particle
moves in the vicinity of a periodic structure can be explained dp
from conservation laws. Radiation arises only if resonance qr- GET;VXBteve. ®)

conditions are fulfilled. To explain the last statement, let us

assume that the medium changes its properties periodicallye consider the lattice potential as that given $ff) in

along a certain direction. If we consider a particle travelingexpressior(2). Variations of the lattice potential and its role

through a medium with velocity emitting quanta of energy in harmonic generation will be considered in a future publi-

fhw and momentunt w/c, the conservation laws for the lon- cation.

gitudinal momentum and the energy can be written in gen- For a monochromatic plane wave of arbitrary polariza-

eral form as tion, with propagation vector along tkxadirection, the vector
potential can be expressed as

V-6p fw , 2w
s ¢ st A =a(n)(0(1-8)sing,scosy), (6
SE—#hw=0, wherea( ) is a shape factor. Herep= o (t—x/c) is the

Lorentz invariant phase. The propagation is taken in the di-
where ¢ is the angle between the direction of a quantumrection of the Poynting vector. The paramet(0<4<1)
emitted and the velocity. The changes in energy and mo- characterizes the degree of elliptic polarization. Linear polar-
mentum of the particle are denoted B¥ and Sp, respec- ization corresponds té=0,=1 and circular polarization to
tively, n is an arbitrary integer, andthe periodicity of the J§==*1NV2.
medium. SinceSE=V- 5p for small changes of the energy of ~ Pulse shape effects for the case of a linearly polarized
the particle, the condition for radiation from the conservationwave incident on a lattice array were considered in R2f.
laws reads Using the expression for the electromagnetic potential, as

well as the gauge field equations, the components of the

Weif w( v ) 27m force equation take the form
—=—|1-——cosf' |=——.
v v c I oo )
- G0 x ; 2\ 1/2 X
For the finite plane-wave—solid interaction, the spectrum “*~ 5 |1~ ?)[vzﬁslnn—vy(l— &%) " cosn]+Fy,
forms a plateau in the region of low harmonic orders with a W)
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, ayw C Uy v§ ! ‘ ' ' ;
vy=-— 1% 1- /(1= 8% "cosy
08}
UV .
+%5smn}+F%, 8)
06
agw, C v2 3
G W Yz o YWz o o1 )=
v, 5 {(1 c C2)5SII’]7]+ 2 (1—6%)"“cosy & o4l
z
+Fy, 9
02}
. Quw e
y= "C L(vzésinn—vy(l—52)1’200577)+m 2(V-V). | ‘ ‘ | 1 | N
0 L \ | .
(10 % 5 o 15 20 25 30

m
Here, v is the relativistic factor given byy=(1—?) %2

andB=vlc. Flp (i=x,y,z) stands for the components of the FIG. 1. Radiation spectrum for linear polarizatioh.=5
lattice force given by X 10° W/en?, N\ =10.6um, |;=4 A, andm=wy/w .

e 02 VoD For a circularly polarized laser pulse interacting with a
FX=— —[ ( 1- —;) (Ve)y— %(Vq&)y] , (11 lattice array, i.e., for the case in whigk=1/2 in Eq. (6), we
Moy ¢ ¢ have performed single-particle simulations for the chse
=5x10°W/cn? and | =10.6m without the influence of
the lattice potential. In Fig. 2 the electron trajectory in the
y-z plane is shown.
(12 Figures 3-5 show the electron displacement in all three
spatial coordinates. The electron dynamics, as we will see in
,  ev, the next section, are in accordance with the analytical solu-
Fp:m{”x(v¢)x+vy(v¢)y}- (13 tions obtained for the equation of motion in an electromag-
netic field with elliptic polarization.
With the aim of verifying the numerical integration of the ~ The corresponding radiated emission once the lattice po-
force equations during the pulse duration we have applie¢ential is considered is shown in Fig. 6. Herg,=1.9

the conservation of energy which can be expressed in term¥ 10>, An unexpected characteristic feature observed in
of the electron velocities in the form the emission spectra is the appearance of two strong peaks, at

m=38 and atm= 31, rather than a single peak as found in the

. e linearly polarized case. As will be demonstrated in the fol-
¥ UiUi:m_E vi(Ei+(Ve)). lowing section both emission peaks originate from a cou-
' 0 pling effect between those different electromagnetic modes

e ¢ X
F)F;: - m[ ( 1- Z—g)(V(ﬁ)y_ UZ.IZJ (V¢)X],

The numerical integration performed here was carried out

using atomic units, in whick=my=%#=1 andc=137.07.

In this metric the most used units are given as ol
1g=1.098<10’a.u., 1cm/see4.572<10 %a.u., 1sec
=4.132x10%a.u., 1cm-1.889x10%a.u., 1V/icm=1.945 5
x10 %a.u., and 1 W-5.554 a.u.

The numerical procedure outlined here reproduces the 4
emission spectrum with the plateau and the cutoff obtained,.
by Huller and Meyer-ter-Vehml] for a thin solid layer illu- 15l
minated by a linearly polarized laser pulse. The cutoffs were
found at the predicted values, ., as given by Eq(4). Fig- 20l
ure 1 shows the radiation spectrum for a laser intensity of
I, =5x10°W/cn?. The lattice period is taken ds=4 A. 25|
For this case, the electrons traverse through seven lattice
sites in an optical cycle and the spectrum forms a well- B0 2Tt I Bo a0 3o ate #0500

defined plateau with a cutoff aroumd= 16, as predicted by
expression (4). Here, m stands for the harmonicso,
=mw_ . The peak intensity is near the cutoff value. The FIG. 2. Electron trajectory in thg-z plane for circular polar-
spectrum is normalized by a factdp=4.74<10" % and ization. I, =5x10° W/cn? and A, =10.6um; variables are ex-
does not show emission at the fundamental frequescy pressed in atomic units.

z
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FIG. 3. Electron motion in thg direction for circular polariza- FIG. 5. Electron motion in the direction for circular polariza-
tion. Parameters as in Fig. 2. tion. Parameters as in Fig. 2.

excited from the resonance conditions, corresponding to abources. From the electron displacement and the size of the
three spatial directions. In other words, the electrons executgxcursion in all three spatial directions we will derive the
main excursions along a bidimensional array in the plangesonance condition for those harmonic numbers that corre-
y-z, with a drift along the direction of propagation of the spond to the peak intensities in the emitted spectra.
wave, and from each of those excursions radiation is emitted. From the equation of motion we have
As for the linearly polarized case the electrons perform har-
monic motions along lines of equidistant ion cores. _

In Fig. 7 the emission for the case of a laser intenkjty a(yvy)= —aoC(1— 8%y cosy,
=5Xx10W/cn? is plotted, with f,=2.9x10 2 For this

case, two strong peaks arount=25 _and 100 are emi'Fted. q (14)
nalytical preciction that will be presered n e V. | gt (=g sing,
IV. ANALYTICAL SOLUTION OF THE EQUATIONS where 7= (1—v,/c). On the other hand, we have that
OF MOTION
With the aim of obtaining an analytical expression for the %(Wx) = a(yc),

dynamics of charged particles moving in an external ellipti-
cally polarized laser field we solve the equations of motion _
for free electrons without the action of other externalfrom which we get

500 . T T r - \ : 1 T . . . . T . . .
450 ¢ 8
400 | 5 08} _
350 1 - .
300 + E — 06 J
a
N 250) E ‘ )
o 1
200 | 4 04} ‘ ‘ ‘ ]
150 i b
100 - ] 02} ‘ |
50 _ | - ' ‘ i ’ I —
0 L i Il L L Il 1 0 { l ‘ ‘ | 1 ‘ | | L i 1
0 1000 2000 3000 4000 5000 6000 7000 8000 0 5 10 15 20 25 30 35 40 45 50
t m
FIG. 4. Electron motion in the direction for circular polariza- FIG. 6. Radiation spectrum for circular polarization. Parameters
tion. Parameters as in Fig. 2. as in Fig. 2l.=4 A andm=w,/w, .
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1 , . . , . to a maximum displacement in a given direction is expressed
as
08} 27 .
nmax,izl_ S, I=XxY,z, (17
C
T 08¢ wherel. is the lattice spacing ang, is the amplitude of the
T electron excursion for a particular coordinate. From the lin-
& 04l | ear part of Eqs(16) the amplitude of the excursions can be
obtained by takingp= /2, which corresponds to the value
of the phasey for maximum amplitude in the electron quiver
02t 1 motion in they direction, and given by
Il AL
“Ill”ill 1“ 111‘%‘!’151.\}““ m“’| Il ” ‘ .‘ ‘ I, ‘I. S5=— a3,
% 20 o e 80 100 120 X80
m
- . o AL
FIG. 7. Radiation spectrum for circular polarization.=5 doy=—="ay,
X 10°W/cn?, A =10.6um, |.=4 A, andm=w,,/o, . 22w
v\ —1
X pX+mOC )\L
Y ( c Mot (15 a2 0

Using the equation for the energf=myyc?=p?c?>  Since s, is an order of magnitude smaller i, than the

+mgc?, the expression foy and Eqs(14) we can obtain the ~displacement in the other two directions, we have that two

momenta of the particle. main modes will contribute to the emission peaks.
Expressing the velocities in the form = (di/d») 7, i Coupling 5, and 6, in Eq. (17) we have that the emission

=x,y,z, and upon integration we have that the coordinatespeaks will be radiated at the harmonic numbers

for the case whed=1/#2, are given by

_[AL| @
1 ag( ) nmax+_ E ﬁ(’ﬂ‘f’Z),
X==-—(np—siny),
2 Kk 1T (18)
AL ag
Nmax = | — | —=(7—2).
1 a e (I
y:—ﬁf(l—cosm, (16) ¢/2\2
For instance, forl =5x10°W/cn? (a,~6.4x10 %),
Nmax, =31, andny,, =8 as obtained from the numerical
1 a M -
7= — —O(n—sin 7). computation of the dynamic equations and shown in Fig. 6.
V2 k For an intensity of 5% 10°W/cn? (ap~2.025<10 3),

' ' ' . Nmax, =100, andny,,, =25 as shown in Fig. 7. The small
The last equations descrl_be the trajectories for _eleCtronéontribution effect to the coupling from, would be given
driven by a circularly polarized laser field and are in agreey,, (77/4)()\L/|c)a§ with negligible values 0.0085 and 0.085

ment with their numerical counterpart shown in Figs. 3-5.¢ 7 4w o intensities & 10° and 5x 10°W/cn? respectively
The trajectory for they component is essentially described ' '

by a sinusoidal function with ampIitudéyz)\LaO/2\/§Tr,

and quiver velocity given by, = 2agc/\2(2+ ag). Figures VI CONCLUSIONS

4 and 5 show that the particles drift along thendz position Harmonic radiation emission from electrons driven by a
coordinates, with velocitiesv 4= agc/(2+aé) and vy, short femtosecond elliptically polarized laser field and under
=\2a,c/(2+a2), respectively, as given from Eq€l6). the influence of a periodic lattice potential was obtained.

For linearly polarized laser light incident on a periodic ion
array, the emission spectra were found to be characterized by
harmonic numbers forming a plateau with a sudden cutoff. In

We have seen in Sec. Il that the location of the cutoff isthe case of elliptic polarization the numerical emission spec-
derived from a resonance condition obtained from the contra contain two strong emission peaks, attributable, as de-
servation laws of energy and momentum. In a similar wayrived from the theory presented here, to the maximum excur-
we can locate the cutoffs in the emission spectra by using theion amplitude of the motion in the two directions of the
expression for the amplitudes of the excursions for all thregolane normal to the direction of propagation of the laser
spatial directions. Thus, the cut-off emission correspondingight. It is found that coupling effects between the modes that

V. RESONANCE CONDITION FOR RADIATION
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correspond to those excursion amplitudes are responsible ftinrough the condition of resonance, at the analytic expres-
strong harmonic emission at two main peaks in the spectraions(18) that give the location of two maxima that corre-
The contribution to the emission from the motion in the di- spond to the emission peaks in the spectra and whose har-
rection of propagation of the wave proved to be weaker thamonic numbers are in accordance with those obtained from
that mode produced by the other two directions, at least aQumerical computations.

order of magnitude in the normalized vector potential. We
recall that for higher laser input energies disintegration of the
lattice structure could take place, invalidating the approach
presented here. The motion of free electrons embedded in an
elliptically polarized laser field was solved analytically in  One of the author¢R.O.-R) is grateful to T.J. Ayhllon
closed form. From the analytical procedure employed in thifor encouraging support during the preparation of this work
work we derived the equations for the coordinates and caland acknowledges financial support from Consejo Nacional
culated the magnitude of the electron excursion in all threele Ciencia y Tecnologi(CONACyYT) under Contract No.
spatial directions. From those calculations we arrived33251-E.
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